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Abstract: Background: The aim of the study is to investigate whether the circadian IOP rhythm can be
influenced by combined cataract surgery with high frequency deep sclerotomy (HFDS) and whether
intraocular pressure (IOP) can be significantly reduced by HFDS. Methods: In our study 10 pa-
tients were included, in whom 24 h IOP monitoring was installed before and after HFDS/cataract
surgery using a Triggerfish. HFDS is a minimally invasive glaucoma surgery (MIGS). Results: After
performed HFDS combined with cataract surgery, the IOP was reduced from 27.7 ± 2.11 mmHg to
14.4 ± 2.59 mmHg, which is highly significant (p < 0.001). The contact lens sensor (CLS) cosinor anal-
ysis pre- and postoperatively showed that the circadian rhythm is not influenced by the surgery, i.e.,
the circadian IOP rhythm did not show significant differences before and after surgery. Conclusions:
HFDS combined with cataract surgery is a potent surgical method that can significantly reduce the
IOP. However, the circadian rhythm cannot be changed by the surgery. The acrophase remained
during the night in all patients.

Keywords: Triggerfish; IOP pattern; minimal invasive glaucoma surgery (MIGS); high frequency
deep sclerotomy (HFDS)

1. Introduction

Open angle glaucoma is a multifactorial disease in which different risk factors are
involved. There are several ways to treat open-angle glaucoma, the first of which is
intraocular pressure (IOP) reduction where progression of the disease is significantly
slowed or even kept stable [1,2]. There is strong evidence that high IOP is associated with
incidence, prevalence, and progression of glaucoma [3–7]. Other important risk factors
for glaucoma progression are ocular blood flow and the imbalance between IOP and
blood pressure [8,9]. IOP peaks and fluctuations are considered to be other important
risk factors [9]. For all these reasons, it is not only important to achieve a sufficient and
significant reduction in IOP, but also to consider their behaviour in the circadian cycle.

A significant proportion of patients experience visual impairment due to glaucoma
despite the IOP being in a good range during office hours. It was found that 69% of IOP
peaks occur outside office hours [10]. A 24 h tonometry can give us much more information
about the IOP behaviour of each individual patient in contrast to an IOP evaluation during
consultation hours or hospitalisation, where the non-physiological behaviour of the patient
is observed. Optimal would be a 24 h IOP measurement under physiological conditions
independent of body position or state of wakefulness [11].
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To overcome these limitations, a contact lens sensor (CLS, SENSIMED Triggerfish,
Sensimed AG, Lausanne, Switzerland) was developed, whose measurement is based on
the fact that the IOP is correlated with changes in ocular dimensions.

IOP follows a circadian rhythm, an internal clock that allows for alignment of bio-
logical process with a 24 h light-dark cycle [12]. Cataract and glaucoma are ophthalmic
diseases that might affect photic input to the circadian system. These diseases lead to
visual impairment and indirectly cause physical inactivity, which can further cause sleep
problems and daytime sleepiness.

It can be shown that the circadian IOP course is like a fingerprint, even under treatment
conditions of glaucoma. In our previous studies, not only could the individual circadian
rhythm of the patients be shown, but also the nightly peaks [13]. In another study, a 24 h
CLS measurement showed that the rate of visual field progression in previously treated
glaucoma eyes could be correlated based on a specific time of treatment. It is possible
that 24 h CLS measurement may be used to identify an important risk factor for glaucoma
progression in order to initiate appropriate treatment [14]. In other words, 24 h CLS
measurement has the potential to identify other risk factors that have a direct therapeutic
impact on glaucoma treatment.

These collected data by biometric sensors are valuable to the extent that the under-
standing of a treatment method can be significantly improved. Now that we have a new
measurement tool at our disposal, the question arises as to which treatments have an im-
pact on the circadian IOP rhythm and which do not. This could lead to further refinement
of glaucoma treatment strategies.

2. Materials and Methods

In a prospective, open label study we assessed the IOP fluctuations as recorded with
SENSIMED Triggerfish® (Figure 1) in one eye for two 24 h periods at three month intervals
before and after HFDS combined with phacoemulsification in patients with primary open
angle glaucoma and cataract. The same eye was recorded on both occasions. Patients
performed a baseline 24 h IOP monitoring within one week before and one to three months
after surgery. A total of 10 patients were included in the study. The following inclusion
criteria were defined for the conduct of the study: diagnosis of open angle glaucoma,
documented glaucomatous visual field damage with MD of −3 dB or worse and/or
findings at the optic nerve head and/or retinal nerve fiber layer that are representative of
glaucoma, stable IOP-lowering treatment for the preceding 4 weeks, older than 18 years
at inclusion, not more than six spherical diopters or equivalent and no more than two
cylindrical diopters, no surgery within the last three months, and signed informed consent
for the investigation. The following points were defined as exclusion criteria: corneal or
conjunctival abnormality hindering contact lens adaptation, severe dry eye syndrome,
patients allergic to silicone, participation in other clinical research within the last four
weeks, advanced-stage glaucoma, patients with baseline IOP > 30 mmHg under treatment,
Monokel situation, and pregnancy.

SENSIMED Triggerfish® is a CE-marked device manufactured by Sensimed AG (Lau-
sanne, Switzerland). The system consists of a telemetric sensor based on a soft silicone
contact lens (CLS) that is placed on the patient’s eye, an antenna that is placed around the
patient’s eye, and a data cable connected to an antenna and to the recorder that powers the
device and stores the recorded data. The SENSIMED Triggerfish® is intended as a tool for
the clinician to continuously record the timing of relative changes believed to be related
to IOP.

The sensing resistive gauges (i.e., strain gauges in a Wheatstone bridge configuration
that measure changes in electric resistance/voltage) have a circular arc shape around the
centre of CLS, placed at the position that corresponds to the cornea-sclera junction, where
IOP changes are assumed to involve maximum corneal deformation (Figure 1).
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and surveillance of glaucoma. The measurement data is transmitted wirelessly from the 
CLS to an antenna that is taped to the head. From there, the information is transferred to 
a data storage device that is worn around the neck. After 24 h, the CLS is removed and 
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we showed the measurement of circadian biological rhythms before and after surgery 
(Figure 2). These measured graphs can be superimposed. It is obvious that the circadian 
biological rhythm in this example follows the same rules as before the surgery, regardless 

Figure 1. Triggerfish contact lens with sensor and Bluetooth.

Earlier studies have demonstrated that the Triggerfish CLS provided reproducible
data [15,16]. Furthermore, several clinical studies have provided information about satis-
factory tolerance of the Triggerfish CLS in both healthy and glaucomatous patients [17,18].

According to [19–21], 3 µm change in the radius of curvature of the cornea (over a
typical radius of 7.8 mm) corresponds to 1 mmHg in IOP.

Measurements are recorded for 30 s every 5 min during a 24 h period, which leads to
288 measurements over a 24 h time period. This measuring method can be assumed to be
pseudo-continuous, which, in contrast to standard static measurements performed with
Goldmann tonometry, provides much more accurate data on the treatment, evolution, and
surveillance of glaucoma. The measurement data is transmitted wirelessly from the CLS to
an antenna that is taped to the head. From there, the information is transferred to a data
storage device that is worn around the neck. After 24 h, the CLS is removed and the data is
analysed with appropriate software.

Circadian rhythm measurement is based on cosinor-based rhythmometry, which is
commonly used to study circadian biological rhythms. Using an example, a study patient,
we showed the measurement of circadian biological rhythms before and after surgery
(Figure 2). These measured graphs can be superimposed. It is obvious that the circadian
biological rhythm in this example follows the same rules as before the surgery, regardless
of the treatment. The CLS measurement was performed in the same way for all patients
and all values were used for the evaluation.

A combined cataract/high frequency deep sclerotomy (HFDS) was performed in all
patients. For the cataract surgery, an Oertli Catarhex 3 with an easy tip with a diameter of
2.2 mm was used. The Phaco-Chop was used as the surgical technique. At the end of the
cataract surgery, HFDS was applied. Before inserting the HFDS tip through the paracentesis,
the anterior chamber is filled using viscoelastic. Visual control in the operating area is
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ensured by means of four-mirror glass. With the HFDS tip, six sclerotomies of 0.3 mm
thickness, 0.6 mm width, and a depth of 1 mm are formed.
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Figure 2. A measurement example overlays a 24 h measurement before and after the surgery.

The high frequency diathermy probe (Figure 3) has an internal platinum electrode
that is insulated from one of the returning coaxial electrodes. The platinum tip has a length
of 1 mm and a width of 0.3 mm and is inclined at an angle of 15◦. The outer diameter
of the probe is 0.9 mm. The high frequency current flows at 500 KHz, which generates
a temperature of 130 ◦C at the tip of the probe. A bipolar current generator forms an
electric field only at the tip of the probe. Consequently, also due to the high frequency, the
temperature propagation is only local around the probe tip. No coagulation effects could
be detected in the surrounding area.
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Corneal pachymetry (CCT) was measured in the study using the Scheimpflug camera
Pentacam (Oculus Optikgeräte GmbH, Wetzlar, Germany). IOP was measured using
Goldmann tonometry.

This study was performed in accordance with the protocols of the Declaration of
Helsinki, internationally recognized standards for clinical research involving medical
devices, and all applicable regulatory requirements. The study was approved by the
institutional review board and ethics committee of the Faculty of Medicine of the Military
Medical Academy, University of Defense, Belgrade, Serbia.

Statistical analysis was performed using IBM SPSS Statistics version 22.0 (IBM Corp.,
Armonk, NY, USA). The Kolmogorov–Smirnov test and the Shapiro–Wilk test were used
to determine whether there is a normal distribution of the data (a data set is normally
distributed if p > 0.05). Parametric datasets are further analysed with the Student-t test and
non-parametric datasets with the Wilcoxon test. Significance is given if p < 0.05.

3. Results

The study included 10 patients with open angle glaucoma, 5 subjects (50%) were
female and 5 subjects (50%) were male. The mean age of the patients was 68.3 ± 6.43 (range
55–81) years. The preoperative cornea pachymetry CCT could be determined with a mean
value of 557 ± 13.5 µm (range 540–570 µm) (Table 1).

Table 1. Preoperative baseline values.

Sex Age Pachymetry CCT IOP Preoperative IOP Reducing
Drugs Preoperative

5 female, 5 male 68.3 ± 6.43 years
(range 55–81)

557 ± 13.5 µm
(range 540–570)

27.7 ± 2.11 mmHg
(range 24–31) 3.1 ± 0.99

The preoperative IOP averaged 27.7 ± 2.11 mmHg (range 24–30 mmHg). After
combined cataract surgery and HFDS, the IOP was reduced to 14.4 ± 2.59 mmHg (range
11–18 mmHg) three months postoperatively, which is significant (p < 0.001). Preoperatively,
an average of 3.1 ± 0.99 ocular pressure reducing drugs had to be administered. After
three months, no patient needed an ocular pressure-lowering treatment, which is highly
significant (p < 0.001). This corresponds to an average IOP reduction of 13.3 mmHg or a
reduction of 48%. A significant IOP reduction was achieved in all patients (Figure 4).

The CLS cosinor analysis pre- and postoperatively of the maximum amplitude of
the acrophase in all patients in the sleeping period phase was achieved and the mini-
mum amplitude of the bathyphase in the afternoon was determined. The acrophase was
155.6 ± 76.47 mVeq preoperatively and 145.7 ± 59.17 mVeq postoperatively, which is not
statistically significant (p = 0.66). On average, the acrophase was detected preoperatively at
03 h 24 min, whereas postoperatively it was slightly earlier at 02 h 32 min. The same phe-
nomenon could also be observed in the bathyphase where the amplitude was on average
preoperatively at 15 h 32 min and shifted to earlier at 14 h 17 min. The CLS analysis of the
biphasic amplitude of the acrophase had preoperative mean of 166.6 ± 74.93 mVeq and
postoperative mean of 172.8 ± 62.53 mVeq which was also not significant (p = 0.79).

The analysis of the amplitudes at any time of the 24 h measurement pre- and post-
operatively have been performed and compared. It could be shown that there was no
significant statistical difference at any time (p > 0.05). In other words, it can be concluded
that the surgical treatment by cataract surgery combined with HFDS does not change the
circadian rhythm (Figure 5).
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4. Discussion

We found that after cataract surgery combined with HFDS, a minimally invasive glau-
coma surgery, we achieved an excellent pressure reduction of 13.3 mmHg. In comparison,
it has been described several times in the literature that cataract surgery itself causes an
IOP reduction of 3 mmHg in open angle glaucoma [22,23]. Consequently, HFDS leads to
an outstanding IOP reduction. Triggerfish measurement data are given in mVeq and are
associated with IOP fluctuation. We found that cataract surgery combined with HFDS does
not alter the circadian rhythm, although it can be said that pre- and postoperative circa-
dian rhythms statistically non-significantly differ. Interestingly, however, the amplitude
maximum of the acrophase in the night postoperative could be detected 52 min earlier
compared to the preoperative data. Accordingly, the bathyphase in the afternoon was
shifted to 75 min earlier preoperatively versus postoperatively. This result makes sense,
since cataract surgery combined with HFDS significantly reduces the outflow resistance
without affecting the circadian rhythm. It is important to know that HFDS does not change
the circadian IOP cycle. Therefore, the postoperative target eye pressure should ideally
always be lower than the IOP peak. This has a direct impact on the diagnosis and has
therapeutic consequences.

Remarkably similar results could be shown after selective laser trabeculoplasty (SLT)
in open angle glaucoma, when the absolute IOP value was reduced by the treatment but
the circadian rhythm remained unchanged [24]. In another study, it was described that
surgical treatment of open angle glaucoma showed a smaller IOP fluctuation postoper-
atively than following conservative drug treatment. However, the surgical group was
inhomogeneous in the sense that different surgical methods were used such as deep scle-
rectomy, trabeculectomy, and ex-press (shunt) [25]. We cannot confirm this because the
preoperative amplitudes of the circadian rhythm in our study do not differ significantly
after surgery. This was also shown in another study, which states that the potential for
surgical IOP reduction by deep sclerectomy and trabeculectomy is greater than the use of
drug treatment with Latanoprost, but that the treatment itself does not cause a difference
in IOP fluctuation [26]. In principle, however, it would be desirable that the treatment
have an influence on the circadian rhythm in the sense of a smaller postoperative IOP
fluctuation, which would potentially cause less damage to the optic nerve. Basically, it
should be mentioned that a typical pattern of the contact lens sensor (CLS) with a noc-
turnal rise in IOP also exists in healthy patients [27,28]. Furthermore, in another paper
it was concluded that IOP measurement several times a day does not sufficiently reflect
its dynamics, which clearly shows the advantage of CLS measurement [29]. The 24 h
measurement by CLS is very useful to determine the nocturnal associated IOP peak and
consequently to improve the clinical management of glaucoma therapeutically, especially
in patients showing progression [30]. Additionally, the characteristic that both eyes behave
symmetrically in the sense that the IOP fluctuations, peak and amplitudes, have the same
values is important [31].

An important aspect to discuss is how reliable the received data from CLS is. In
a very good study design, a CLS measurement was installed in one eye while the IOP
measurement was performed on the opposite eye with a pneumatonometer during a
24 h period [32]. The CLS uses a strain gauge, which is installed in a contact lens. The
circumferential curvature of the corneoscleral part of the bulbus is measured [21,33]. At
present, there is no complete understanding between an IOP change and the volume
change measured in the corneoscleral region. However, there seems to be a correlation [32].
The pneumatonometer effectively measures the IOP by applanation of the central cornea
through externally applied pressure, where the back pressure can be measured as IOP [34].
The pneumatonometer was applied every 2 h. The cosinor analysis of the nocturnal peak
time of the 24 h measurement by CLS and the calculated analysis of the IOP measured
in the contralateral eye using a pneumatonometer did not differ significantly [22]. In
this sense, the measured amplitude profiles in our study before and after surgery can be
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considered reliable. Our measured values are reproducible, which is a great advantage in
terms of the value of the treatment carried out.

An advantage of our study is that it was conducted prospectively. However, it should
be noted that the number of eligible patients who participated in this study was only
ten, which is a limitation of our research. Nevertheless, our results show high validity.
Regarding IOP, it seems clear that it decreased after the surgical treatment described above,
which did not affect the change in circadian rhythm.

5. Conclusions

In our study, we found that cataract surgery combined with high frequency deep
sclerotomy (HFDS) achieved a highly significant IOP reduction. However, it was found that
the circadian rhythm measured by CLS is not changed by surgery compared to preoperative
analysis. It has also been observed that all patients in both cases, before and after surgery,
had the highest IOP during the nocturnal period.
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